Low Temperature Ultramicroincineration of Thin-sectioned Tissue
نویسندگان
چکیده
Low temperature ultramicroincineration was employed to determine the morphological localization of "structure-bound" mineral and/or metallic elements within biological cells at the electron microscope level. This technique chemically removes organic material from thin sections of tissues with reactive, excited oxygen instead of heat as used in a furnace. The remaining ash representing the mineral/metallic ultrastructure of cells is advantageous for ultrastructural studies because incineration without applying heat is less destructive than the burning associated with high temperatures. This low temperature incineration method was applied to thin-sectioned avian shell gland mucosa, a calcium transporting system, as a sample tissue. The results include: recognition of many subcellular organelles in the ash patterns, identification of dense, ash-containing granules (possibly organic-metallic complexes) in epithelial cells which may be involved in calcium transport, description of ashed erythrocytes and collagen, comparison of ashed glutaraldehyde fixed tissue with and without osmium postfixation, description of lead-stained cells after ashing, demonstration that ash preservation is dependent upon section thickness, illustration of the fine resolution obtainable because the ash residues remain relatively near their in situ origins, discussion of technical problems in this relatively new field, and demonstration of the presence of Ca and P in the ash with electron microprobe X-ray analysis.
منابع مشابه
Process Optimization of Deposition Conditions for Low Temperature Thin Film Insulators used in Thin Film Transistors Displays
Deposition process for thin insulator used in polysilicon gate dielectric of thin film transistors are optimized. Silane and N2O plasma are used to form SiO2 layers at temperatures below 150 ºC. The deposition conditions as well as system operating parameters such as pressure, temperature, gas flow ratios, total flow rate and plasma power are also studied and their effects are discussed. The p...
متن کاملGrowth and Characterization of Thin MoS2 Films by Low- Temperature Chemical Bath Deposition Method
Transition metal dichalcogenide (TMDC) materials are very important inelectronic and optical integrated circuits and their growth is of great importance in thisfield. In this paper we present growth and fabrication of MoS2 (Molibdan DiSulfide)thin films by chemical bath method (CBD). The CBD method of growth makes itpossible to simply grow large area scale of the thin la...
متن کاملStudy of Photo-Conductivity in MoS2 Thin Films Grown in Low-Temperature Aqueous Solution Bath
An experimental study over the optical response of thin MoS2 films grownby chemical bath deposition (CBD) method is presented. As two important factors, theeffect of bath temperature and growth time are considered on the photocurrentgeneration in the grown samples. The results show that increasing the growth time leadsto better optical response and higher difference betw...
متن کاملOptimization and validation of cryostat temperature conditions for trans-reflectance mode FTIR microspectroscopic imaging of biological tissues
In Fourier transform infrared (FTIR) microspectrocopy, the tissue preparation method is crucial, especially how the tissue is cryo-sectioned prior to the imaging requires special consideration. Having a temperature difference between the cutting blade and the specimen holder of the cryostat greatly affects the quality of the sections. Therefore, we have developed an optimal protocol for cryo-se...
متن کاملEffect of growth time on ZnO thin films prepared by low temperature chemical bath deposition on PS substrate
ZnO thin films were successfully synthesized on a porous silicon (PS) substrate by chemical bathdeposition method. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM),and photoluminescence (PL) analyses were carried out to investigate the effect of growth duration(3, 4, 5, and 6 h) on the optical and structural properties of the aligned ZnO nanorods. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 55 شماره
صفحات -
تاریخ انتشار 1972